

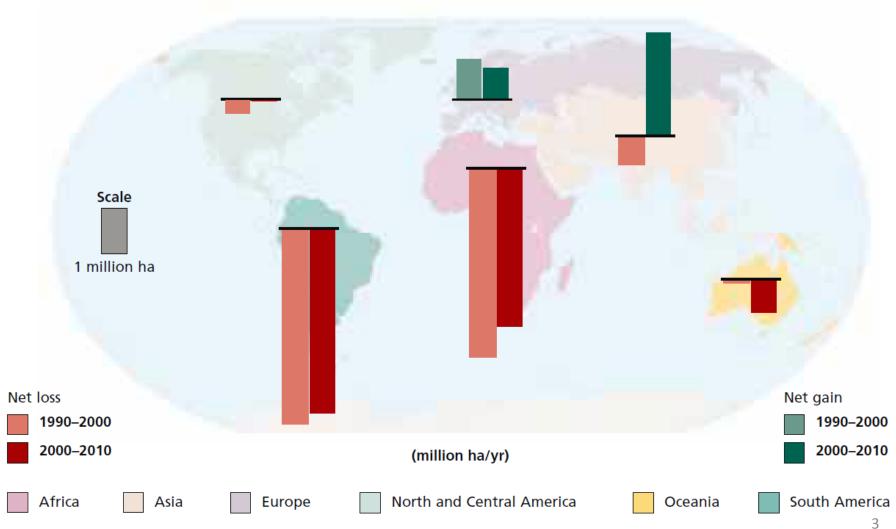
Short Rotation Forestry (SRF) - a Way to Sustainable Agribusiness

Dipl.-Ing. (FH) Sebastian Hauk

HSWT – University of Applied Sciences Weihenstephan-Triesdorf, Faculty of Forestry at Straubing Centre of Science, Germany

Dr. Sanjeev Chauhan (Punjab Agricultural University, India) **DI Thomas Lewis** (Energieautark, Austria)

Outline


- 1. Introduction
- 2. Management practices and economic feasibility of SRF in
- Germany/ Europe
- India/ Asia
- 3. Comparison of SRF in Asia and Europe

Introduction

Annual change in forest area by region, 1990–2010

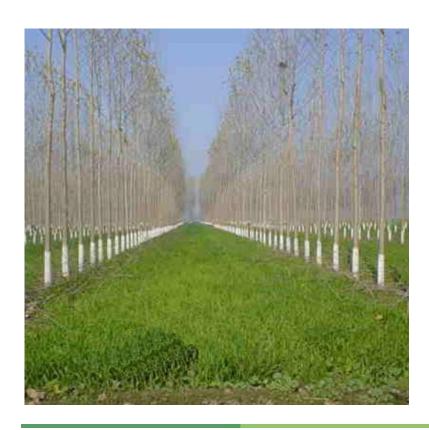
Source: FAO 2010

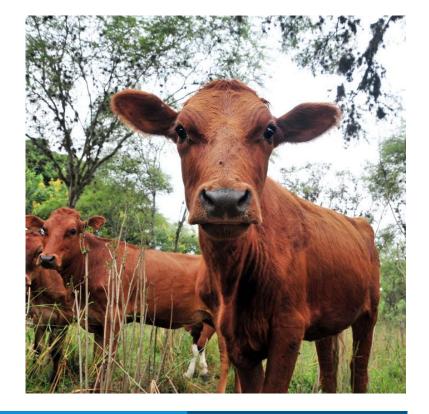
Pressure on natural forests

What is Short Rotation Forestry?

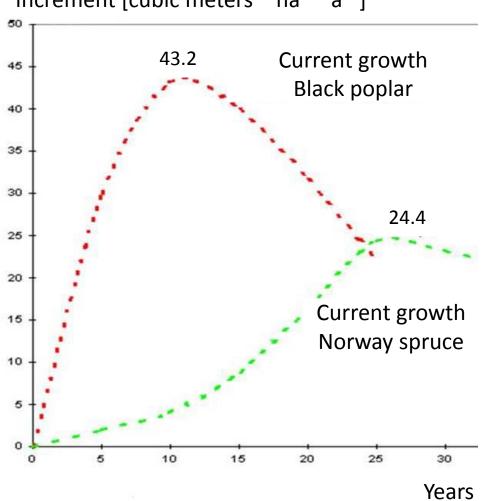
Fast growing tree species

Photo: Hauk, S. Photo: Hauk, S.




What is Agro Forestry?

SRF & agriculture



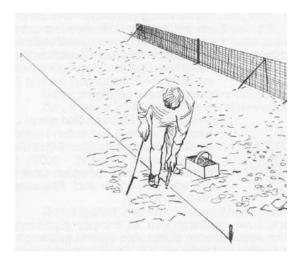
Why SRF?

Increment [cubic meters * ha⁻¹ *a⁻¹]

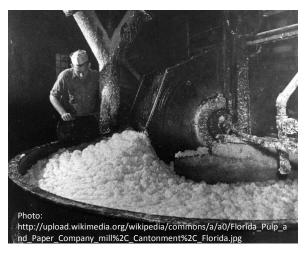
Energy Input- Energy Output	Land use
1:2 - 1:3 Rödl 2012	Maize for Biogas
1:9 - 1:13 Eder et al. 2009	SRF for Combined Heat and Power

Why SRF?

Ecosystem services:


- Water
 - Quality
 - Quantity
- Protection against
 - Water erosion
 - Wind erosion
 - SRF maybe used to improve *salinized* soils
 - Influence on the groundwater table

In contrast to intensive farming



Management practice in Europe

Establishment

Harvesting

Utilization

Photos: Hauk, S.

Management practice in Asia

Establishment

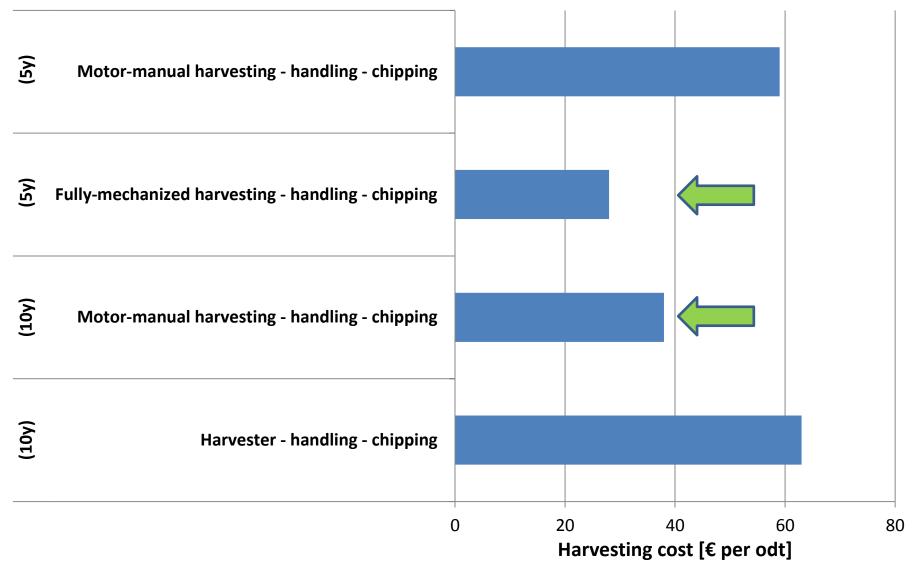
Harvesting

Utilization

Other ways of wood production

Photos: Chauhan, S.

Other ways of wood production



Cost of harvesting methods

WEIHENSTEPHAN-TRIESDORF UNIVERSITY OF APPLIED SCIENCES WEIHENSTEPHAN-TRIESDORF UNIVERSITY OF APPLIED SCIENCES Economics of different harvesting systems

Overview of assumptions	Poplar, 3 year rotation cycle; Lifetime 30 years	Poplar; 10 year rotation cycle; Lifetime 30 years
Biomass price [€/odt]	90	90
Biomass yield [odt/ha*a]	10	12
Interest Rate	6	6
Costs [€]		
Establishment [€]	2580	1580
Land rent [€/a]	210	210
Maintenance [€/a]	0	0
Harvest & Transport [€]	826	4770
Recultivation [€]	1400	1400
Annuity [€/a]	514	598

Source: own calculations

Personal use of wood chips

Fuel (Nominal thermal capacity: 60 kW)	Heating oil	Firewood	Wood chips	Pellets
Capital costs [€/a]	1,356	2,002	2,370	2,196
Fuel costs [€/a]	6,193	4,944	2,781	5,361
Sum of operating costs [€/a]	352	565	838	745
Costs of heat supply [€/kWh]	0.085	0.081	0.064	0.089

Comparison of SRF in Asia and Europe

- Shortage of woody biomass in India is already noticeable
- SRF, especially Agroforestry, plays an important role in Asia
- Competitiveness of agriculture is strong in Europe => little SRF area
- In Asia SRF/AFS is more viable than in Europe
- For both:
 - Demand for woody biomass is increasing
 - Energy crops with positive environmental impact are required

Compendium

- High efficient tree species providing:
 - Biomass
 - Ecosystem services
 - Labor
 - Income and welfare for rural areas
 - Can be mixed with cash crops
 - Reduce pressure on natural forests
 - Can help to meet climate objectives

Thank you for your attention!

E-Mail:

s.hauk@wz-straubing.de chauhanpau@rediffmail.com office@energieautark.at stefan.wittkopf@hswt.de